University of Macau Faculty of Science and Technology CPTG104 – Computer Science Syllabus 1st Semester 2010/2011 Part A – Course Outline

Compulsory course in CEE, EEE and EME

Catalog description:

Introduction to computer science with simple overview of computing history, organization of hardware and software. Algorithms and simple object-oriented programming techniques via theoretical concepts and practical skills. Problem solving with the programming language C/C++.

Prerequisites:

• None

Textbook(s) and other required material:

• Joel Adams & Larry Nyhoff, C++: An Introduction to Computing, Third edition, Prentice Hall, 2003.

References:

- Y. Daniel Liang, *Introduction to Programming with C++, Comprehensive*, Pearson Education, 2007.
- <u>http://www.cs.ust.hk/~dekai/library/ECKEL_Bruce/</u>
- <u>http://msdn.microsoft.com/en-us/library/Aa733747</u>
- <u>http://www.cplusplus.com/doc/tutorial/</u>

Major prerequisites by topic:

1. None

Course objectives*:

- 1. Introduce fundamentals of computer history, organization of hardware and software. [a, j]
- 2. Learn basic concepts of programming languages. [a, j, 1]
- 3. Learn basic knowledge of data representations in memory. [a, c, j, l]
- 4. Learn design principles and problem solving skills using structured and object oriented programming. [a, c, e, j, l]

Topics covered:

- 1. **History of computing, introduction to computer systems** computer hardware and software, basic concepts of computer structure.
- 2. Problem solving and software engineering basic phases of software life cycle, object-centered design.
- 3. Data representation data types and declarations, variables, expressions and operations, assignments.
- 4. **Problem solving techniques** design and implementation of algorithms, properties of algorithms, notations for describing algorithms.
- 5. **Introduction to classes** class structure and declaration, data encapsulation, input and output classes, format control, computing with string objects.
- 6. Principles of high level programming languages selection, repetition, control structures, blocks, and scope.
- 7. **Functions and libraries** –parameters of functions, function prototypes, calling a function, inline functions, function templates, function signature and overloading, recursive functions, library construction, using a library in a program, and incorporating functions and libraries.
- 8. **Files and streams** use file streams to carry out I/O, standard input and output with files, processing data involving files, file streams as parameters.

9. **Object-oriented data structure** – Arrays, vector<T> class template, STL (Standard Template Library) containers and algorithms.

Class schedule and credits:

Timetable	Timetabled work in hours per week			Total hours	Total credits	No / Duration of
Lecture	Tutorial	Practice	teaching weeks			exam papers
3	1.2	0.8	14	70	3	1 / 3hrs

Contribution of course to meet the professional component:

This course teaches students with no prior experience in computing to understand ideas at the core of computer science and solve simple problems with programming language.

Relationship to CEE, EEE and EME program objectives and outcomes:

This course primarily contributes to CEE, EEE and EME programs outcomes that develop student abilities to:

- (a) an ability to apply knowledge of mathematics, science, and engineering.
- (c) an ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- (j) a knowledge of contemporary issues.
- (1) an ability to use the computer/IT tools relevant to the discipline along with an understanding of their processes and limitations.

The course secondarily contributes to Computer Science program outcomes that develop student abilities to: (e) an ability to identify, formulate, and solve engineering problems.

Contribution to Program Outcomes:

	Co	ntribu	tion t	to PO	s [#]	
Program Outcomes	5	5> 1				
		Significant			Least	
	5	4	3	2	1	
(a) An ability to apply knowledge of mathematics, science, and engineering;	\checkmark					
(b) An ability to design and conduct experiments, as well as to analyze and						
interpret data;						
(c) An ability to design a system, component, or process to meet desired needs	\checkmark					
within realistic constraints, such as economic, environmental, social, political,						
ethical, health and safety, manufacturability, and sustainability;					<u> </u>	
(d) An ability to function on multidisciplinary teams;						
(e) An ability to identify, formulate, and solve engineering problems;		\checkmark				
(f) An understanding of professional and ethical responsibility;						
(g) An ability to communicate effectively;						
(h) The broad education necessary to understand the impact of engineering						
solution in a global, economic, environmental, and societal context;						
(i) An ability to recognize the need for, and to engage in life-long learning;						
(j) A knowledge of contemporary issues;	\checkmark					
(k) An ability to use the techniques, skills, and modern engineering tools	\checkmark					
necessary for engineering practice appropriate to the degree discipline;						
(1) An ability to use the computer/IT tools relevant to the discipline along with		\checkmark				
an understanding of their processes and limitations.					1	
# Note 5: Significant contribution; 4: Supporting contribution; 3: Moderate contribution	1;					
2: Marginal support; 1: Least support						

	Week no.	Topics	Notes	Hours
	1	Introduction to Computer Science History of computing, organization of computer systems, computer hardware and software.		3
	2	Problem Solving and Software Engineering First look at C++ program, illustrate the basic phases of software life cycle, and introduce object-centered design. First look at classes and object-oriented design.		3
	3	Types and Declarations Data representation, C++'s syntax rules and naming conventions, study variables and constants. First look at using attribute variables in classes.		3
	4	Mid-Autumn Festival		
	5	Operations and Expressions Study software development using OCD, examine various data types and operators for building expressions, study assignment operators, look at input and output operators along with format manipulators. First look at class constructors – default and explicit-value, and initialize instance variables as well.	Assignment 1	3
Course Content: (topic	6	Functions Study how to build functions, how a function is called, and how a function is executed. Study libraries and see how they can be reused in different programs. First look at class methods.	Assignment 2	3
outline)	7	Using Classes Study basic features of classes and how to use them. Study the input and output classes. Study the string class. First look at how to develop instance methods.		3
	8	Selection Introduction of selection structure, examine the if statement in detail, study the switch statement and the implementation of certain multi-alternative selections. First look at mutator methods in classes.	Assignment 3 Lab Quiz 1	3
	9	Repetition Examine C++'s for statement in detail, study while and do loops, look at various kinds of input loops. Introduce the object- oriented concept of reusability via inheritance.		3
	10	Midterm Exam	Assignment 4	3
	11	Functions in Depth Study parameter passing of functions, see the inline functions and when to use, introduce recursive functions. Expand on earlier discussions of class and instance variables and examine scope rules for classes.	Lab Quiz 2	3
	12	Files and Streams Use OCD to solve a problem involving files, examine how to use file streams to carry out I/O, learn open and close file streams. Look at string streams and how they can be used for I/O.	Assignment 5	3

	Week	Topics	Notes	Hours
Course	no.			
Course	13	Arrays, vector <t>s, and STL</t>		3
Content:		Solve a list-processing problem using an array, study in some		5
(topic		detail the vector <t> class template, take a look at the Standard</t>		
outline)		Template Library (STL) and its algorithms.		
	14	Final Review	Assignment 6	3
			Lab Quiz 3	

Course content:

]	Maths	Engineering Science	Engineering Design and Synthesis	Complementary Studies	Computer Studies	Total 100%
	0	30%	20%	0	50%	100

Coordinator:

Chao Sam, Assistant Professor of DCIS

Persons who prepared this description:

Chao Sam, January 10, 2011.

Part B General Course Information and Policies

1st Semester 2010/2011

Instructor:	Dr. Chao Sam	Office:	N426
Office Hour:	by appointment	Phone:	8397-4476
Email:	lidiasc@umac.mo		

Time/Venue: (to be announced)

Assessment:

Final assessment will be determined on the basis of:						
Homework	10%	Lab Quiz	20%			
Mid-term	30%	Final Exam	40%			

Grading Distribution:

Percentage Grade	Final Grade	Percentage Grade	Final Grade
100 - 93	А	92 - 88	A–
87 - 83	B+	82 - 78	В
77 - 73	B-	72 - 68	C+
67 - 63	С	62 - 58	C–
57 - 53	D+	52 - 50	D
below 50	F		

Comment:

The objectives of the lectures are to explain and to supplement the text material. Students are responsible for the assigned material whether or not it is covered in the lecture. Students who wish to succeed in this course should read the assignments prior to the lecture and should work all homework and lab assignments. You are encouraged to look at other sources (other texts, etc.) to complement the lectures and text.

Homework Policy:

The completion and correction of homework is a powerful learning experience; therefore:

- There will be approximately 6 homework assignments.
- Homework is due one week after assignment unless otherwise noted, no late homework is accepted.
- The course grade will be based on the average of the HW grades.

Quiz

One mid-term exam and approximately 3 Lab quizzes will be held during the semester.

Note

- Recitation session is important part of this course and attendance is strongly recommended.
- Check course web pages for announcement, homework and lectures. Report any mistake on your grades within one week after posting.
- No make-up exam is give except for CLEAR medical proof.
- Cheating is absolutely prohibited by the university.