
1

Case-based Adaptation for Automotive
Engine Electronic Control Unit Calibration

Chi-man VONG*

Department of Computer and Information Science, FST, University of Macau,
Macao

E-mail: cmvong@umac.mo, Tel.: +853-83974476, fax: +853-28838314

Pak-kin WONG

Department of Electromechanical Engineering, FST, University of Macau, Macao
E-mail: fstpkw@umac.mo

Rui-he BAO

Department of Computer and Information Science, FST, University of Macau,
Macao

E-mail: ma56582@umac.mo

Abstract
The automotive engine performance is greatly affected by the calibration of its electronic

control unit (ECU). The method for ECU calibration is traditionally done by trial-and-error. This
traditional method consumes a large amount of time and money. To resolve this problem, case-
based reasoning (CBR) is employed, so that an existing and effective ECU setup can be adapted to
fit another similar class of engines. The adaptation procedure is done through a more sophisticated
step called case-based adaptation (CBA). The CBA is an effective knowledge management tool,
which can interactively learn the expert adaptation knowledge. The paper briefly reviews the
methodologies of CBR and CBA. Then the application to ECU calibration is described via a case
study. With CBR and CBA, the efficiency of calibrating an ECU can be enhanced. A prototype
system has also been developed to verify the usefulness of CBR in ECU calibration.

Keywords: Case-based reasoning (CBR), Adaptation, Electronic control unit
(ECU) calibration

1. Introduction

Modern automotive engines are controlled by the electronic control unit (ECU). The engine
performance, such as power, torque, brake specific fuel-consumption and emission level, is
significantly affected by the setup of control parameters in the ECU. Parameterization of electronic
control unit (ECU) software is a major milestone in the development process for modern
automotive engines. This process is known as ECU calibration or ECU tune-up. Fig. 1 shows a
screenshot of calibration process in an ECU software. ECU calibration is engine dependent. In
other words, an ECU setup is only valid on the same engine model. Traditionally, the ECU
calibration is done by the vehicle manufacturer. However, in recent years, the programmable ECU
(Fig. 2) and ECU read only memory (ROM) editors have been widely adopted by many
performance cars. These devices allow the non-factory engineers to tune up their engines
according to different add-on components and driver’s requirements, and create business for
aftermarket automotive industry.

Current practice of engine tune-up relies on the experience of the automotive engineer, who
will handle a huge number of combinations of engine control parameters and carry out many
engine testes on the dynamometer according to different combinations of engine control
parameters. The relationship between the input and output parameters of a modern car engine is a
complex multivariable nonlinear function, which is very difficult to be found [1]. Consequently,
engine tune-up is usually done by trial-and-error method. This spends a large amount of time and

* Corresponding Author

2

money. In industrial practice, many automotive engineers like to tune up an engine by referring to an
existing base map, which is obtained from the past setup of a similar engine or the same engine.
The parameters of the base map are then adjusted to fit different performance requirements of the
same engine, or even to fit another but similar engine. This practice exactly fulfills the working
environment of Case-based reasoning (CBR), i.e., based on a retrieved similar case, adaptation is
then performed to fit different new situations. So, a case-based reasoning and adaptation
framework for computer-aided ECU calibration is proposed in this study.

2. Case-Based Reasoning

Case-based reasoning [2, 8, 11, 18] is a simple problem-solving paradigm that involves
matching a current problem against similar problems that were successfully solved in the past. The
process can be augmented by adapting solutions so that they can match the current problem more
closely. There are many examples for CBR applications, e.g., an auto mechanic who fixes an
engine by recalling another car that exhibited similar symptoms, a lawyer who advocates a
particular outcome in a trial based on legal precedents or a judge who creates case law. Hence,
CBR is a prominent kind of analogy making.

Since CBR is a kind of lazy-learning methodology, it does not induce any useful rule but
stores all instances (cases) in a knowledge base called case library. When a new problem is
entered to and then resolved by the CBR system, a case comprising this problem and its solution is
also stored in the case library. So, CBR learns by accumulating cases. Maintenance of knowledge
base in CBR system becomes easy and does not require re-compilation of the whole system [10,
15]. In theory, CBR has been formalized for purposes of computer reasoning as a four-step process
[17, 5]:
� Retrieve: Given a target problem, CBR retrieves cases from case library that are relevant to

solving the problem. A case consists of a problem, its solution, and, typically, annotations
about how the solution was derived.

� Reuse: The solution is mapped from the previous case to fit the target problem. This may
involve adapting the solution as needed to fit the new situation.

� Revise: Having mapped the previous solution to the target situation, test the new solution in
the real world (or a simulation) and, if necessary, revise.

� Retain: After the solution has been successfully adapted to the target problem, store the
resulting experience as a new case in memory.

In the following subsections, retrieve and reuse stages are described. Revise and retain stages

are described in Section 4 together with the application to ECU calibration.

2.1. Similarity Function in Retrieval

In the retrieval stage of CBR, there are numerous different designs of a similarity function [11,
12]. However, a simple similarity function [17, 18] is usually employed to find the nearest
neighbor for the current problem from the reference cases:

∑

∑

=

=

×

=
n

i

i

n

i

R

i

I

ii
RI

W

ffsimW

WffE

1

1

),(

),,(

where Wi is the importance of ith attribute of a case, sim is the similarity function for primitives,
and fi

I and fi
R are the values for feature fi in the input and retrieved cases respectively. The user

could freely design the similarity function but mostly this function could employ the Euclidean
distance function and turn Equation (1) to:

∑

∑

=

=







 −
×

=
n

i

i

n

i i

R

i

I

i
i

RI

W

fRange

ff
W

WffE

1

1

2

)(

)(

),,(

(1)

(2)

3

In case symbolic features are encountered,



 =

≠
=−

R
i

I
i

R
i

I
i

ffif

ffif

R
i

fI
i

f
0

1

where Range(if) is the range of the ith feature in the case. It is used to normalize the difference (fi
I - fi

R) and ensures the difference lies on the range (0, 1). For symbolic features, Range (fi) = 1.

The retrieved case with the smallest value E is considered the most similar to the new case because
the value E is now indicating the distance (difference) between the input case and the retrieved
case. The similarly of the cases can also be expressed as percentage, using

%100]),,(1[),(×−= WffEffSimilarity RIRI

2.2. Reuse

After a similar case is retrieved, it is reused to generate a new solution. The process is called
reuse stage or adaptation. Adaptation methods in CBR [5, 16, 19] can be categorized according to
the complexity of the problem domains, namely, substitutional adaptation, transformational
adaptation and derivational replay. In ECU calibration, only substitutional adaptation, or
specifically parameter adjustment, is employed because no modification on case schema is
necessary. However, CBA is required as an assistant to adapt existing ECU parameters to fit a new
engine or a new performance requirement.

3. Case-Based Adaptation (CBA)

Adaptation in CBR sounds easy but very difficult to implement because no general rules can
cover all situations even in a very specific domain. The only way to acquire adaptation knowledge
is only done by consulting human domain experts for their ways to handle different problems [13].
However, even the human domain experts may not answer precisely and accurately how the
problems can be handled. In addition, there is no formal agreement on how to represent adaptation
knowledge. With the emergence of CBA, the previous difficulties could be alleviated.

3.1. Mathematical Model of Adaptation

The adaptation knowledge in CBR is usually represented as rules. The adaptation rules
specify, under a certain situation, how to modify the value of a feature of the case in order to
generate the solution for the new problem. A prospective model of adaptation [3] is recently
proposed as an ordered sequence of adaptation rules which is called adaptation history, in which
adaptation rules are defined in terms of functions transforming one case into a successor case. In

mathematical expression, an adapted case C' = ααααm ⊕⊕⊕⊕ ··· ⊕⊕⊕⊕ αααα2 ⊕⊕⊕⊕ αααα1 (C), where C is the retrieved

case and ααααi is the adaptation rules or adaptation operators.

3.2. Principle of CBA

When the problem domain is simple or well-understood, the set of adaptation rules ααααi can be
easily and automatically selected by the system to make effect on similar old case and to produce a
new one. The selection of adaptation rules is done easily by comparing the conflicting differences
between the new problem and the current retrieved case. In addition, the sequence of applying the
adaptation rules is also important because they may not be commutative.

Although a mathematical model of adaptation is formulated, in real world problem domains,

there is still no universal method for finding out the adaptation rules ααααi and their corresponding

sequence. Then the selection of adaptation rules ααααi and their order can only be left to the user,
based on his/her domain experience. Hence adaptation in such domains is highly experience-
driven. To reduce the burden from the user to review the adaptation rules and choose the most
appropriate ones, another source of adaptation knowledge is necessary to guide the system for the
automatic selection of suitable adaptation rules. Since this selection process is based on domain

(3)

(4)

4

experience, another level of CBR could be established to augment the adaptation stage. This
method of integrating two levels of CBR for augmenting adaptation is called case-based
adaptation (CBA).

In CBA, guidance for adaptation (both what features to adapt and how to adapt the features)
is given by a previous case. The guidance supplying the adaptation information is called an
adaptation case. An adaptation case contains meta-information for adaptation and is different
from a case in CBR. When potential problems with solutions are identified, it is not always clear
exactly what should be fixed to solve the problem. If blindly applying adaptation rules, the newly
generated solution may not be qualified enough although it may still satisfy all the user
specifications. However, previous experience to guide adaptation can promote novel adaptations
leading to creative solution.

Domain expert, whose knowledge of how adaptation should be performed can be captured
during the use of a CBR system, presumably provides adaptation cases. After initial installation of
adaptation case library, as time passes by, the expert fills gradually the adaptation case library by
repeatedly using the CBR system. This provides a better and more natural way to acquire domain
knowledge that is not easy to capture into production rules via communication with experts. Hence
the main objective of CBA is to provide a more convenient and consistent method to perform case
adaptation in some complex problem domains such as ECU calibration. The overall operation of
CBA is shown in Fig. 3 and it mainly consists of:

1. Retrieval stage of adaptation cases: it takes place from Fig. 3, Steps 1 to 4. Adaptation is
done at Step 5.

2. Learning stage (of case and adaptation case): it takes place from Steps 6 to 9.
3. Maintenance stage: it is done (Step 6 & Step 9) for checking the consistency and redundancy

when a learned case or adaptation case is to be added to the case libraries.

3.3. Structure of Adaptation Case

CBA can be viewed as another CBR for adaptation process. The purpose of this inner CBR is
to assist the outer CBR system for adaptation. The case representation of the outer level of the
CBR system is usually domain-dependent. So, there is no formal model of constructing case
representation for a CBR system. However, for the inner level of the CBR system (CBA), the case
representation [4, 7, 9, 20] can be generalized into a format that should contain at least the
following information:

I. Adaptation capability: Functionality of the adaptation case, e.g., which features can
be modified, which features can be added, deleted, etc.

II. Previous successfully adapted case: Reference to the past similar situation for
successful adaptation, just simply an ID linking a normal case.

III. Adaptation history: Suggested rules for adaptation.

The first and the second parts of an adaptation case are used as retrieval index (Fig. 3, Step 2).
To retrieve a similar adaptation case, the first step is to match the conflicting features of the
current problem against the capability (Part I) of an adaptation case. If the adaptation case contains
the knowledge to solve the conflicting features of the current problem, it is said that the adaptation
case is capable to handle the adaptation stage for the current problem, and the adaptation case is
selected as one of the candidates to provide decision support during adaptation.

The second step in retrieving a similar adaptation case (Fig. 3, Step 3) involves matching the
current retrieved case against the past case successfully adapted (Part II of the adaptation case).
The matching is done exactly the same as the retrieval using Eq. (4). If the past successfully
adapted case referenced in the adaptation case is similar to the current retrieved case, then the third
part of the adaptation case (adaptation history) is recommended to the user (Fig. 3, Step 4). Since
the retrieved adaptation history is just a reference for adaptation, successful adaptation is not
guaranteed. Then the user needs to refine the sequence. The user-refined adaptation history is
captured as the result part of a new adaptation case in order to handle future similar adaptation
process (Fig. 3, Step 7). The current retrieved case fills in the second part of the adaptation case
while the third part is filled with the user-refined adaptation history. Based on this adaptation
history, the list of functionalities for the adaptation case can be extracted, such that the first part of
the adaptation case can be filled (Fig. 3, Step 8).

5

3.4. Matching Algorithm for CBA

The retrieval of adaptation case is based on two issues: capabilities to handle solution features
and the similarity of base case to the current retrieved case. In finding capable adaptation case,
there are three possible situations:

a. Exact match:
Attributes (current retrieved case) = Attributes (adaptation case)

b. Similar and adaptable:

Attributes (current retrieved case) ⊆ Attributes (adaptation case)
c. Similar but not adaptable:

Attributes (current retrieved case) – Attributes (adaptation case) ≠ Ø

Exact match means that the solution attributes necessary to adapt are exactly the same as the
ones provided by the adaptation case. This is the ideal situation. The similar and adaptable
situation happens when the adaptation case contains not only the features to adapt but also the
adaptation capability for some unnecessary features. Some unwanted results will then be produced
and human intervention is necessary to modify the set of adaptation rules. The last possible
situation in matching of adaptation case is the similar but not adaptable one. When the adaptation
case is not capable to adapt a required solution feature, it is not adaptable for the current situation.
Invention (by human) of new adaptation rules may be necessary to overcome this not-adaptable
problem. The matching algorithm is simply illustrated in Fig. 4, where ‘Attributes(X)’ is a set, ‘–
‘ is operator of set difference, | X | is operator of set cardinality.

3.5. Learning & Maintenance in CBR and CBA

In CBR, whenever adapting an existing solution to solve a “new problem”, a new case
containing the “new problem” along with the adapted solution is generated. Then this new case is
checked against the case library for consistency and redundancy. If an exact (or highly similar)
case is found in the case library, then the new case is not added into the case library because the
case library has already covered this new case. For a contradicting case, it is either removed or
repaired based on a maintenance process, which belongs to the topic of case base maintenance [14]
and is out of the scope of this paper. In the system implementation of this research, a contradicting
case is ignored. After checking the case consistency and redundancy, the new case is added to the
case library for future reuse (Fig. 3, Step 6). This is the learning and maintenance process of
CBR – RETAIN. Similarly, CBA uses the same procedure for learning and maintenance (Fig. 3,
Step 9).

Comparing to general learning methodologies, knowledge is not required to extract during
learning stage. Learning in CBR means storing a new case. This process is much easier than the
eager learning methods. Maintenance in CBR is also easier because this is done directly during
learning stage where the eager learning methods cannot. So, less effort is necessary for knowledge
base maintenance in CBR.

4. Application to ECU Calibration

In modern automotive engines, a lot of engine performance is affected by the control
parameters in the ECU, such as power performance, idle speed performance, emission
performance, etc. As the scope of the problem domain is very wide, this project selects an engine
ECU calibration for aftermarket power performance tune-up to demonstrate the effectiveness of
the CBR and CBA methods. The engine power performance is usually expressed as a power curve
against speeds. The engine power at specific engine speed is mainly determined by the engine
torque at wide open throttle and the formula is shown in Eq. (5) [6].

60746

81.92

×

×××
= r

r

Tr
HP

π

where HPr : Engine horsepower at the corresponding engine speed r (Hp)
Tr: Engine torque at the corresponding engine speed r (kg-m)
r : Engine speed (RPM : Revolution per minute)

(5)

6

An example of power performance data of an engine output horsepower and torque against
speeds is shown in Fig. 5. For aftermarket tuning, the user has a lot of freedom to adjust the power
of a car according to their needs. Eq. (6) shows the goal of engine power performance tune-up P(x)
for aftermarket tuning, which tries to maximize the engine torque at specific speed subject to
various user-defined weights.

∑
Γ∈

=
r

rrTwPMaximize)()(xx

where wr is the user-defined weight of the torque function Tr(x) at the corresponding engine speed
r. The range of each weight is [0, 10]. From the operating characteristics of the internal
combustion engine, it is impossible to obtain maximum engine torque across all engine speeds; a
trade-off among engine speeds is necessary (i.e. preference to low speed torque or medium speed
torque or high speed torque). Therefore, the user-specific weights have to be introduced. In ECU
calibration, each calibration map is usually divided the engine speed discretely with interval 500

RPM (See Fig. 1 again). Hence r∈Γ={1000, 1500, 2000, …, 8500 RPM}. In Eq. (6), the torque

function T(x) is equivalent to the torque produced by an ECU setup x at wide open throttle, and the
following ECU parameters are selected in this case study for demonstration purpose:

x = < Ir, tr, Jr, d, vt>

Ir: Ignition spark advance at the corresponding engine speed r (degree before top dead centre)
tr: Fuel injection time at the corresponding engine speed r (millisecond)
Jr: Timing for stopping the fuel injection at the corresponding engine speed r (degree before top

dead centre)
d: Ignition dwell time at 15V (millisecond)
vt: VTEC changeover speed (2500 – 7000 RPM, interval: 500 RPM)

According to the above information and goal, the case definition of the current case study can

be constructed as C = (w, x). In terms of CBR jargon, w is the problem part while x is the solution
(retrieved) part. For illustration, an example of well-known HONDA B-series VTEC engine is
used. Suppose an automotive engineer has already calibrated a HONDA B16A engine based on
different engine torque requirements (i.e., weight vector w), he/she produces a base map (i.e., ECU
setup x). All of these cases (i.e., (w, x)) are stored in a case library CB (Later, we denote a case
library containing ECU setups for B16A by CBB16, while for another HONDA B-series engine
B18C by CBB18). When a HONDA B18C engine needs ECU calibration, CBR can be applied to
reuse cases and adaptation knowledge from CBB16. The reason is that B16A and B18C engines are
actually very similar in hardware configuration. Their ECU setups are also similar in a way. The
following subsections describe the four CBR stages applied to solve the ECU calibration problem.

4.1. Retrieval

Suppose an ECU setup y for a Honda B18C engine is required under a new user-input torque

requirement z∈ [1, …, 10]16. Where 1 to 10 are the importance for the engine torque at the
corresponding engine speed, and there are totally 16 engine speeds (i.e., 1000, 1500,..8500). The
weights z can be considered to be the problem part of a case. The similarity function for current
application is specified in Eq. (2), where f I = z, f R = w, and W = [1, 1, 1, …, 1] because all features
are equally important in current application. The ranges of all features in z, w are the same (i.e.,

within [1, 10]) so the ranges of features in Eq. (2) are constant. It should be noted that w ∈ [1, …,
10] 16, because they specify the weights of 16 different engine speeds. Using Eq. (4) to compute
the similarities for z against every w in the case library CBB18, the most similar case cbest = (wbest,
xbest) is retrieved (Fig. 6), if any, where xbest means the most similar ECU setup. However, if no
similar case exists in CBB18, then CBB16 is selected to be the most suitable case, but adaptation is
needed to adapt a B16A ECU setup to fit the B18C engine.

4.2. Reuse

Assume no similar case can be found in CBB18, but a similar case can be found in CBB16. The
retrieved case cbest = (wbest, xbest) only works for a B16A engine, where wbest are most similar to the
input problem z. For the B18C engine, the solution y is derived from xbest by applying expert
adaptation knowledge according to the differences between wbest and z. For example, if wbest, 2000 =
4 and z2000 = 3, they differ by tq_diff2000 = z2000 - wbest, 2000 = -1. Based on these differences with

(6)

7

respect to all engine speeds, then the solution y = CBA(xbest, tq_diffr) with respect to r can be
obtained. In the following, the adaptation knowledge for handling tq_diffr is described.

4.2.1. Adaptation Knowledge / Rules

Adaptation knowledge is in fact a list of individual rules called adaptation rules, which
contains a sequence of adaptation operators as illustrated in Table 1. This rule governs the
modification of the solution part xbest of the retrieved case. In this case study, only substitutional
adaptation, or specifically parameter adjustment, is employed because no modification on case
schema is necessary. Table 2 specifies the structure of such an adaptation operator (e.g., op21,
which means that a value of 10 is added to the feature t2000).

For retrieval efficiency and management, the adaptation knowledge for one application (e.g.,
B16A engine to B16B engine, or B16A engine to B18C engine, etc.) is usually stored in a single
table independent of other cases and other applications. Moreover the expert users can modify the
table as necessary.

4.2.2. Adaptation Cases

Although adaptation rule is defined, the burden of choosing and performing appropriate
adaptation still leaves to human users. CBA can aid this problem as discussed in previous section.
According to the definition in Section 3.3, the three parts of an adaptation case can be defined for
current case study (Table 3). The first part “Adaptation capability” contains engine speed and
torque difference together. The second part contains just a case ID. In the first adaptation case, for
example, case #120 has been successfully adapted to fit a new problem, using the operators {op21,
op33, op45, …} to fix the torque difference of +1 under 1000RPM. Although the sequence of
operators can be simplified to adaptation rules, it is still recommended to use adaptation operators
because sometimes an adaptation rule may contain unwanted side-effects on the features.

4.2.3. Procedure of CBA for ECU calibration

When the torque requirements z is specified from user, the most similar case cbest = (wbest, xbest)
is retrieved. By simply comparing z and wbest, a list of torque weight difference can be easily
calculated, e.g., z – wbest = [tq_diff2000, tq_diff2500, …, tq_diff8500] = [1, 3, …, 0]. Each tq_diffr,
except equals to 0, requires performing a case-based adaptation. The matching procedure is simple
and straightforward as described in Section 3.4. The corresponding adaptation rules for tq_diffr are
then returned.

In this case study, the adaptation rule for a tq_diffr is just to manipulate the ECU features with
respect to the engine speed r. For example, for tq_diff2000, adaptation rule = {op21, … } only
modifies the features I2000, t2000, J2000, etc., but not doing anything to the features I3000, t4000, J5000,
etc. Hence the adaptation rules are commutative. Finally, the target solution y may be obtained by
applying these adaptation rules subject to tq_diffr over all engine speeds, e.g., y = ({op78, …,

op120})⊕…⊕ ({op21, …, op19})⊕ (xbest), where ⊕ means applying adaptation operators.

However, the operators themselves inside the adaptation rule are ordered, i.e., {op21, …, op19} ≠
{op19, …, op21}. Moreover, the retrieved adaptation rules are just for the user’s reference. They
may not exactly match the current torque requirements z. There are even some conflicts within
adaptation rules. That is the reason why human revision on the adaptation rules is required, as
discussed next.

4.3. Revise

Although the adapted solution y for torque requirements z is obtained as mentioned in
previous subsection, the torque requirements z may not be actually satisfactory. Even worse, the
automatically adapted solution is far from satisfactory. At this moment, user intervention is
necessary to modify the retrieved adaptation rules according to his/her expertise. When

performing adaptation, there are at most 16 retrieved adaptation rules for tq_diffr because of r∈Γ =
{1000, 1500, 2000, …, 8500}. Each of these 16 adaptation rules needs user revision which can be
done in several ways:

1. changing the sequence order of the adaptation operators;

8

2. inserting or removing an operator from the adaptation knowledge;
3. both 1) and 2).

If the existing operators are incapable to perform the necessary adaptation, the users can also
create new adaptation operators.

4.4. Retain

A new solution y = CBA(xbest, tq_diffr) is revised and produced automatically or manually in
previous stages. This new solution along with the torque requirements z is considered as a new
case Cnew = (z, y) for ECU setup for a B18C engine. If this setup y is verified to perform well by
dynamometer test (Fig. 7), the case should be retained for future reuse. In addition to the case Cnew,
the adaptation during the CBA procedure (if any) should also be retained as well. In this case study,

every time CBA may produce at most 16 adaptation cases according to tq_diffr. If tq_diffr ≠ 0, the
corresponding adaptation case needs checking for retain. The adaptation case contains the
following information:
Cadapt = <r, tq_diff, ID(xbest), {adaptation rule}>

where r is engine speed, tq_diff is weight difference, ID(xbest) is the case # in the case library
CB, and adaptation rule is the sequence of adaptation operators used. For example, Cadapt = <
2000, +1, 120, {op23, op56, …}>. Before retaining the case, Cnew should be checked that it does
not appear elsewhere (at least not similar to any existing case) in the case library CBB18 to ensure
no redundancy and inconsistency. Similarly, Cadapt is also required to check in its own adaptation
case library for retain as well. The similarity checking can be done with the similarity function in
Eq. (4). No matter whether there is any similar case in CBB18 or not, the result will show to the
user to judge if the case should be retained or not. Hence, high-quality cases and adaptation cases
for B16A-to-B18C setup could be accumulated through this way.

5. Experiments and Results

A complete ECU calibration for a new engine model usually takes one to two years. As a
matter of fact, the experienced engineer in HONDA B16A engine still spends at least half year to
tune up a similar model B18C engine, because a lot of trial-and-error on ECU setups and
dynamometer tests are still required. In addition, ECU calibration is similar to planning and design
domains where explicit knowledge is hard to explain and managed. Therefore the learning curve of
ECU calibration for a novice automotive engineer may be two to three years. Under these two
issues, some experiments have been carried out to show that CBA can contribute to:
1). greatly reduce the necessary time with adaptation from an existing engine model to a new
model;
2). enhance knowledge management of ECU calibration, so that novice engineers can learn better
and in shorter time from the CBR system.

To accomplish the experiments, a prototype system has also been implemented using Borland
C++ compiler under MS Windows XP, which provides the basic graphical user interface and
database management system to construct and link a database, which is regarded as case library.
The case libraries are stored in dbf format. Then many commercial database management systems
can browse and even modify the case libraries without launching the prototype system. The whole
concept and workflow of the experiments are illustrated in Fig. 8. The following subsections
explain the steps in the figure.

5.1. Preparation of Case Library

To prepare a case library CBB16, a B16A engine is run on a dynamometer for ten times. Every
time, its ECU setup xj is adjusted according to a different wj. Then, an expert automotive engineer
is asked to use the CBR prototype system (Figs. 9 -15) to perform adaptation with another set of
requirements wi. His/her adaptation reuses the cases from CBB16. During his/her use, a set of new
cases xi for B16A are produced and stored in CBB16 (Fig. 8, Step 1). The ways he/she adapted form
xj to xi under wi on the same engine are also recorded in another independent database, Adaptation
Case Library. The recorded information includes adaptation cases (Fig. 8, Step 2) and new
generated adaptation operators (Fig. 8, Step 3). As illustrated in Fig. 8, the adaptation cases are
saved in a table called “B16_B16”, which means adaptation from B16A to B16A itself because

9

they are also valid under this kind of adaptation. However, the adaptation operators are universal
over the application, so they can be put in a single table.

5.2. Experiment Workflow of Case-Based Adaptation

5.2.1. Retrieval & Reuse

It should be noted that currently CBB18 is still empty, which means the only data source is
CBB16.Then the objective of CBA is to adapt a best matching B16A ECU setup xbest to fit B18C
under user-specific torque requirements z. To retrieve xbest, z is employed to match against wi in
CBB16 (Fig. 8, Step 4). Its corresponding weight wbest, and case ID, ID(xbest), are used for searching
the most appropriate adaptation case (Fig. 8, Step 5) from B16_B16. Then a set of adaptation rules
Rules is retrieved.

5.2.2. Revise & Retain

Currently the best matching ECU setup xbest, and appropriate adaptation rules Rules are
retrieved. They are passed to the engineer for checking. If no more revision is required, the
adaptation can be automatically applied. For any human revision on the adaptation rules, the
procedure is illustrated in Fig. 8. In the course of revision, the engineer uses the CBR system to
revise the sequence of the adaptation operators, or even produce new adaptation operators as
necessary. After the appropriate revision and confirmation by the engineer, a new generated case y
for B18C is produced and saved in CBB18 (Fig. 8, Step 6). The two pieces of adaptation
information are respectively saved to the Adaptation Case Library (Fig. 8, Step 3 & Step 7). One
point to note is that the adaptation case is now from B16A to B18C. So, it has to be saved
separately in another table called B16_B18. In the future, if there are adaptation cases from B18C
to B18C itself, a table called B18_B18 must be created for their storage.

5.3. Experiments

Firstly, a B18C engine with original (factory) ECU is run on the dynamometer to obtain a
standard torque curve for performance comparison. In order to tune up the B18C engine, a MoTeC
M4 programmable ECU (Fig. 2) is used in the experiments. Then, three different torque
requirements over the engine speeds, i.e., zi = <z1000,i, z1500,i, …, z8500,i>, i=1 to 3, are specified. By
repeating the experiments (Fig. 8, Steps 4-7) under different zi, appropriate cases xbest and
adaptation rules Rules from CBB16 are retrieved and suggested to the engineer for revision, i.e., the
adapted solutions for B18C, yi = CBA(xbest, zi), are produced, i = 1 to 3. These three adapted
solutions yi along with zi are retained in CBB18 for future reuse. Each ECU setup in the solution yi
is entered to the programmable ECU and then the engine is run on the dynamometer one by one
for evaluation. Consequently, three different torque curves are produced for different torque
requirements zi.

5.4. Evaluation of Results

The results can be evaluated in two issues: 1) engine performance and 2) tune-up time.
Comparing to the B18C standard curve, the three different torque curves for yi are not much worse
as shown in Fig. 16. On some engine speed ranges, yi even produce better performance than the
factory ECU setup. It shows the effectiveness of CBA for ECU calibration. Secondly, every time
xbest and Rules are retrieved, the engineer was just given one hour for revision and confirmation of
the adapted solution y in each experiment. Therefore the qualities of yi are not optimal but still
good enough. The engineer also claims that by having more time (e.g., several days), the
adaptation rules may be fully revised and hence yi may give even better performance over the
factory ECU setup, which takes a couple of months to tune up the power performance optimally.
So, the time can be greatly reduced from months to days.

6. Conclusions

This paper describes the techniques of CBR and CBA applied in automotive ECU calibration.
Although CBR was proposed and continually formulated since 25 years ago, a good and feasible
adaptation technique for general case had not been established because adaptation knowledge is

10

highly domain-specific and experience-driven. Hence, adaptation is traditionally a difficult task. In
the research, case-based adaptation has been successfully applied to alleviate the difficulty. From
the perspective of automotive ECU calibration, the application of CBR and CBA is a new attempt.
To verify the proposed methodologies, a prototype CBR & CBA system has been implemented. A
case study shows that the CBR and CBA system can shortly recommend a sub-optimal setup,
which is close to an optimal setup done by a car manufacturer. Additionally, the system is
embedded with learning ability to improve itself. Learning takes place when the system is being
used because the user is required to create new operators and modify the sequence of adaptation,
which can later be reused. The more the use of the CBA system, the rich the knowledge can
capture. Furthermore, the CBR and CBA system can be viewed as an effective knowledge
management tool. From Fig. 8, after an expert automotive engineer uses the CBR system for ECU
calibration, his/her knowledge is logged. Next time, a novice automotive engineer may reuse
his/her knowledge for ECU calibration. This is extremely valuable for a company because much
domain knowledge cannot be explicitly specified and explained. With the CBR system, the
domain knowledge can be saved for other engineers as a reference. Especially for novice engineers,
the CBR system can act as a mentor while they are learning and hence also shorten their learning
curve. Moreover, the proposed CBR and CBA methodologies are generic, they can be applied to
the other ECU calibration problems and engineering applications.

References
[1] Li GY. Application of Intelligent Control and MATLAB to Electronically Controlled

Engines. Publishing House of Electronics Industry (In Chinese).
[2] Armengol E. Usages of Generalization in Case-Based Reasoning. In Proceedings of

International Conference on Case-Based Reasoning 2007 (ICCBR2007); 2007, p. 31-45.
[3] Bergmann R, Wilke W. Towards a New Formal Model of Transformational Adaptation in

Case-Based Reasoning. In Proceedings of European Conference on Artificial Intelligence
1998 (ECAI ’98); 1998, p. 43-52.

[4] Burke EK, Qu R, Petrovic S, MacCarthy B. Structured cases in case-based reasoning -
reusing and adapting cases for timetabling problems. Knowledge-Based Systems; 13:(2-3), p.
159-165.

[5] Gebhardt F, Voβ A, Gräther W, Schmidt-Belz B. Reasoning With Complex Cases. Kluwer
Academic Publishers; 1997.

[6] Pulkrabek WW. Engineering Fundamentals of the Internal Combustion Engine, 2nd Edition.
Pearson Prentice Hall; 2004.

[7] Kelbassa H. Optimal Case-Based Refinement of Adaptation Rule Bases for Engineering
Design. In Case-Based Reasoning Research and Development: 5th International Conference
on Case-Based Reasoning, ICCBR 2003, LNAI 2689; 2003, p. 201-215.

[8] Kolodner J. Case-Based Reasoning. Morgan Kaufman Publication, San Mateo, CA, U.S.A.;
1993.

[9] Lieber J. Application of the Revision Theory to Adaptation in CBR: the Conservative
Adaptation. In Case-Based Reasoning Research and Development: 7th International
Conference on Case-Based Reasoning, ICCBR 2007, LNAI 4626; 2007, p. 239-253

[10] Nilsson M, Sollenborn M. Advancements and Trends in Medical Case-Based Reasoning: An
Overview of System and System Development. In Proceedings of the 17th International
FLAIRS Conference; 2004, p. 178-183.

[11] Pal S, Shiu S. Foundations of Soft Case-based Reasoning. Wiley, John & Sons, Incorporated;
2004.

[12] Pan R, Yang Q, Li L. Case retrieval using nonlinear feature-space transformation. Advances
in Case based Reasoning, LNAI 3155; 2004, p. 361-374.

[13] Seifert C. Case-Based Reasoning by Human Experts. In Case-Based Reasoning Research and
Development: 6th International Conference on Case-Based Reasoning, ICCBR 2005, LNAI
3620; 2004, p. 4-5.

[14] Shiu SCK, Yeung DS, Sun CH, Wang XZ. Transferring case knowledge to adaptation
knowledge: an approach for case-base maintenance. Computational Intelligence: an
International Journal 2005; 17 (2): 295 – 314.

[15] Thibault A, Siadat A, Martin P. A Framework For Using A Case Based Reasoning System
Applied To Cost Estimation. In Proceedings of IEEE Conference on Cybernetics and
Intelligent Systems; 2006, p. 1-6.

[16] Veloso M. Planning and learning by analogical reasoning. Springer-Verlag, Reading; 1994.

11

[17] Watson I, Marir F. Case-based Reasoning: A Review. Knowledge Engineering Review 1994;
9 (4): 382-419.

[18] Watson I. A case study of maintenance of a commercially fielded case-based reasoning
system. Computational Intelligence: an International Journal 2001; 17(2): 387-398.

[19] Weber B, Wild W. CBRFlow: Enabling Adaptive Workflow Management through
Conversational Case-Based Reasoning. In Advances in Case based Reasoning, LNAI 3155;
2004, p. 434-448.

[20] Zhang Y. Case-Based Reasoning Adaptation for High Dimensional Solution Space. In Case-
Based Reasoning Research and Development: 7th International Conference on Case-Based
Reasoning, ICCBR 2007, LNAI 4626; 2007, p. 149-163.

12

Figures and Tables

Fig. 1. A screenshot of fuel map calibration in an ECU

Fig. 2. Engine tune-up using programmable ECU

13

Fig. 3. Workflow of CBR & CBA

14

Fig. 4. Matching Algorithm for CBA

Fig. 5. Example of automotive engine power and torque curves

 Torque weights ECU setup
Retrieved Case cbest wbest xbest

Input Problem z Solution: y
 Problem part Solution part

Fig. 6. Retrieval and adaptation for ECU setup

if Attributes(current retrieved) – Attributes(adaptation case) = Ø
then find the adaptation cases such that

Min(|Attributes(adaptation case) – Attributes(current retrieved)|)
{If the result is 0, it means the adaptation case is an exact matching.}

else find the adaptation cases such that
Min(|Attributes(current retrieved) – Attributes(adaptation case)|)
{Find out adaptation cases covering as many resolving features as possible.}

Similarity matching Adaptation

15

Fig. 7. Car engine performance data acquisition on a dynamometer

Fig. 8. Workflow of CBR & CBA for ECU calibration with a case study illustrating an
adaptation from B16A ECU setup to B18C ECU setup

16

Fig. 9. Dialogue for entering engine torque weights in the prototype system

Fig. 10. Retrieval of similar case

17

Fig. 11. Adaptation rules recommended from the prototype system

Fig. 12. Modifying adaptation operators

18

Fig. 13. Inserting adaptation operators

Fig. 14. Creating new operator

Fig. 15. Checking before retaining an adapted solution

19

9.0010.0011.0012.0013.0014.0015.0016.0017.0018.0019.00

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500Engine Speed (RPM)
Torque (kg-m) B18C Factory ECU setupWeight on low engine speedsWeight on medium engine speedsWeight on high engine speeds

Fig. 16. Original B18C torque curve and its comparison with the torques curves of the three

adapted ECU setups

Table 1. Structure of adaptation knowledge (Rules)

Adaptation
Rule No.

Sequence of operators

1 {op21, op33, op45, …}

2 {op21, op55, op53, …}

.. …

N {op15, op35, op23, …}

Table 2. Format of an adaptation operator

Operator # Feature name Operation Ratio/Value

21 t2000 add 10

“Operator #” is the index of the operator, e.g., op23, op56, etc.
“Feature name” means the name of the feature in the case for modification.
“Operation” performs either: substitute, add, minus, multiply, or divide.
“Ratio/Value” is the operand used for the operation, which is a real number.

Table 3. Structure of adaptation cases

Adaptation cases for B16A setup to B18C setup for torque weight difference

Adaptation capability
Previously

successfully adapted case
Adaptation rule

 Engine
speed

tq_diff Past Case ID Sequence of operators

1000 1 120 {op21, op33, op45, …}

1000 2 10 {op21, op55, op53, …}

… … …

8500 -9 50 {op17, op45, op24, …}

8500 -8 70 {op17, op55, op13, …}

… … …

8500 9 250 {op15, op35, op23, …}

An adaptation
rule

