Image encryption using 2D Logistic-adjusted-Sine map

By: Hua, ZY (Hua, Zhongyun) [1]; Zhou, YC (Zhou, Yicong) [1]

Abstract

With complex properties of ergodicity, unpredictability and sensitivity to initial states, chaotic systems are widely used in cryptography. This paper proposes a two-dimensional Logistic-adjusted-Sine map (2D-LASM). Performance evaluations show that it has better ergodicity and unpredictability, and a wider chaotic range than many existing chaotic maps. Using the proposed map, this paper further designs a 2D-LASM-based image encryption scheme (LAS-IES). The principle of diffusion and confusion are strictly fulfilled, and a mechanism of adding random values to plain-image is designed to enhance the security level of cipher-image. Simulation results and security analysis show that LAS-IES can efficiently encrypt different kinds of images into random-like ones that have strong ability of resisting various security attacks. (C) Elsevier Inc. All rights reserved.

Keywords

Author Keywords: Chaotic map; Chaotic encryption; Confusion and diffusion; Image encryption

KeyWords Plus: CHAOTIC SYSTEM; KOLMOGOROV-ENTROPY; SCHEME; ALGORITHM; CIPHERS; CRYPTOANALYSIS; PARAMETER; CRYPTOSYSTEM; BREAKING; SIGNALS

Author Information

Reprint Address: Zhou, YC (reprint author)

Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China.

E-mail Addresses: huazyum@gmail.com; yicongzhou@umac.mo

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macau Science and Technology Development Fund</td>
<td>FDCT/016/2015/A1</td>
</tr>
<tr>
<td>Research Committee at University of Macau</td>
<td>MYRG2014-00003-FST</td>
</tr>
<tr>
<td></td>
<td>MYRG113 (Y1-L3)-FST12-ZYC</td>
</tr>
<tr>
<td></td>
<td>MRG001/ZYC/2013/FST</td>
</tr>
</tbody>
</table>

Categories / Classification

Research Areas: Computer Science

Web of Science Categories: Computer Science, Information Systems

Document Information

Document Type: Article

Language: English

Accession Number: WOS:000370910800016

ISSN: 0020-0255

eISSN: 1872-6291

Journal Information
Performance Trends: Essential Science Indicators

Impact Factor: Journal Citation Reports®

Other Information
IDS Number: DE8TY
Cited References in Web of Science Core Collection: 52
Times Cited in Web of Science Core Collection: 6

© 2017 Thomson Reuters