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Abstract—Automatic extraction of experimental data on 
protein mutants from large volumes of biological texts 
can help building corresponding databases to facilitate 
research in relevant studies. Mutation extraction cannot 
be fully solved by the surface pattern matching but 
requires linguistic analysis of the plain text. Based on the 
existing regular expression method, we improved the 
mutation extraction by applying the dependency parsing 
technique from natural language processing (NLP). 
Furthermore, we extract valuable data about 
experimental measurements from the texts and relate 
them to the identified mutations. Our method was 
evaluated on MedLine abstracts. The results show great 
potential for future exploration. 

Keywords-natural language processing; mutation 
extraction; text mining; bioinformatics 

I. INTRODUCTION 
Experimental protein mutational analysis is used to 

test residues for their role in the function, stability, and 
folding of proteins and protein-protein complexes. 
Mutants created by substitution, deletion, or insertion 
of amino acid(s) in the wild-type protein using site-
directed mutagenesis or directed evolution, are 
subsequently investigated using various experimental 
methods (thermodynamic analyses, x-ray 
crystallography, NMR, etc.) and the results are 
compared to outcomes from the wild-type.  

Experimental results from mutagenesis studies are 
especially important for the tasks of protein 
engineering, for disease-related research, as well as for 
in-silico protein mutational scans. Mutations for the 
protein of interest are usually collected manually from 
the published literature by the individual laboratories. 
Mass collection of protein mutation data exists, but is 
rarely available mainly due to the time-consuming and 
laborious nature of such tasks. One exceptional effort 
of these databases is the Protein Mutant Database 
(PMD) [1]. To date, the PMD contains a collection of 
218,873 mutants extracted from 45,239 publications 
over the past 30 years. Each record provides, besides 
the mutation, important secondary information such as 

the protein function, structure, sequence, stability, 
cross-reference, etc. 

Hand-curated data are highly accurate but the 
progress is relatively slow, which is difficult to cope 
with the fast growing number of publications. With the 
popularity of the Internet, recent experimental results 
are rapidly accessible. Electronic availability of 
publications makes automatic processing and 
information extraction feasible. 

The main challenges of applying natural language 
processing (NLP) techniques in the biological domain 
literatures (BioNLP) come from both the biological 
and the NLP perspectives. On the one hand, biological 
research would greatly benefit by a brief and precise 
summary of published experimental data; on the other 
hand, scientific publications use a very diverse 
terminology and many symbols, which is not a trivial 
task for the current NLP techniques. Examples of such 
applications include protein-protein interaction 
extraction [2], building of metabolic pathways [3], 
gene ontology construction [4], mutation extraction [5, 
6], etc. 

According to our close communication between 
researchers from both areas, we propose a fine-grained 
approach to address an important task in the BioNLP 
area, protein mutation extraction (ProtME). This 
can be viewed as an example for relevant tasks, such as 
extraction of protein-protein interactions, membrane 
structural properties, etc. 

The rest of the paper is organized as follows: In the 
next section, some related works are introduced; 
Section 3 describes the information needed by 
researchers in the biological field; Section 4 elaborates 
on our approach of automatic extracting of information 
via NLP techniques; the experimental results will be 
shown in Section 5, followed by a discussion; the last 
section concludes the paper and also points out some 
future directions to work on. 
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II. RELATED WORK 
Tools for mutation data extraction such as Mutation 

Finder [6] and Mutation Miner [5] have recently been 
developed. The former focuses on the mutation 
extraction, while the latter also discovers relations 
between proteins and mutations. However, for 
mutational studies, not only the proteins and the 
mutations are the subjects of concern, but also the 
experimentally relevant information. In particular, the 
effects of a mutation e.g. on protein stability, are of 
upmost interest. Databases containing all this 
information will be of significant value to both 
experimental and theoretical research in biosciences. 
To our best knowledge, application of NLP for 
extracting such information has not been addressed so 
far. 

Consequently, our work in this context is to 
establish a framework for the automatic extraction 
process in order to construct a database of mutations. 
Built on the currently available tools, we focus on 
applying the dependency parsing to improve mutation 
recognition, protein-mutation relation recognition, and 
extracting important experimental conditions and 
observations from the literature. Furthermore, once the 
automatic extraction procedure is established, the task 
becomes very similar to the template-based 
information extraction (IE) in the conventional NLP 
field.  
 

III. EXTRACTION TEMPLATE 
Unlike in the traditional NLP, the name-entities 

(NE) of relevance in the biological domain consist of 
names of the genes, proteins, organisms, etc. These 
may be involved in certain interaction events (like 
translation, binding, and mutation) in which specific 
relations between them (such as inhibit, activate, and 
increase stability) are established. 

Literature about mutational studies often provides 
information about (1) the proteins being studied; (2) 
the mutations performed; (3) under which conditions 
the experiment was performed; and (4) results or 
effects of the mutations. An example below extracted 
from a MedLine [13] abstract (PMID 10956001) 
describes a mutation experiment: 

 
Ex1:  CcP (E290K) has a charge-reversal 
mutation in the tight-binding domain, which 
should weaken binding, and it weakens the 1:1 
complex; K1 decreases 20-fold at 18 mM ionic 
strength.  

This example includes all four kinds of information: 
(1) CcP is an abbreviation for the protein Cytochrome 
c peroxidase, which forms a complex with another 
protein Cc; (2) The mutation E290K in CcP was 

performed (3) under the condition of 18mM ionic 
strength; and (4) as a result, a decrease in K1 value was 
observed. 

We detail the properties of the four kinds of 
information as follows: 

Protein. Mutation experiments usually involve one 
or more proteins, in which mutations are selectively 
performed. And it is often mentioned in the title or in 
the beginning of the manuscript to set the focus of the 
study. Proteins without mutations are referred to as the 
wild-types (WTs), and mutated proteins are called the 
mutants.  

Mutation. The mutation of a protein is usually 
expressed in the literature in a conventional way, e.g.  
“mutating residue Arginine at position 23 to residue 
Alanine” is typically written in the short form 
ARG23ALA or R23A. However, the identification of a 
mutation that is embedded in the context turns out to 
be a nontrivial task.  For instance,  
 
Ex2: His-230 and His-309 were mutated to 
phenylalanine. 

Ex3: Asn-Gly pairs were changed into Leu 
(Asn244, Asn255, Asn437) or Ala (Asn276) 
 

In both cases, even a complicated pattern matching 
such as developed in [6] cannot recognize these 
mutations mentioned in the texts. The relation between 
the WT residue and the mutated residue can only be 
captured via the verbs mutated and changed. Therefore, 
linguistic analysis of the text is required for 
recognizing such mutations. 

Condition and Result. Both of them are similar in 
the sense that they are often expressed in manuscripts 
as quantitative values. In addition, the resulting 
measurements may infer a qualitative relationship 
between the protein and the mutation, such as weaken 
the binding complex in Ex1.  

To summarize, the extraction template can be 
described as follows, 

 
MutationExperiment 
<List<protein,List<mutation>>,List<condition>  
List<result>> 

 
Thus, the task now is to recognize, extract, and re-

formulate the data from the source text and fill in the 
template with the obtained information. A mutation 
study might include a number of mutations, and each 
of these individual experiments is considered as one 
MutationExperiment object. Elements in the same 
object are therefore associated through retrieving the 
binary relations between them (Figure 1). 
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Figure 1. Binary relation for the MutationExperiment object created 

from Ex1. 
 

IV. EXTRACTION APPROACH 
In order to fill in the template mentioned above, we 

need to use several linguistic preprocessing techniques 
and also extraction rules (or patterns) to obtain relevant 
information from the plain text. 

A. Linguistic Preprocessing 
We preprocess the raw texts using several linguistic 

modules, including the tokenizer, the Part-Of-Speech 
(POS) tagger, the Named-Entity (NE) recognizer, and 
the dependency parser. 

Tokenization. In fact, the first step is not as trivial 
as it looks like. For example, if we have a protein like 
(5S,6E,8Z,11Z,14Z)-5-hydroperoxy-6,8,11,14-eicos 
atetraenoic acid (5S-HpETE), it is difficult to decide 
whether to take it as a whole or to tokenize it into 
several parts, and into how many parts. The current 
version of our system uses ABNER [7]. 

POS Tagging. This is almost the same as the 
conventional POS tagging in NLP, but the statistical 
model needs to be trained on the annotated in-domain 
data. We utilized LingPipe [8], which is a Hidden 
Markov Model (HMM) trained on the GENIA corpus1. 

Dependency Parsing. Dependency parsing has not 
been widely used in the BioNLP research, due to the 
efficiency problem when a large set of data needs to be 
processed. However, in our work, we use the keyword-
based search as a filter to restrict the range of applying 
the parsing technique. In other words, we use the 
coarse-grained search to zoom into the “interesting” 
parts and then apply a fine-grained processing (i.e. 
dependency parsing) to obtain precise results. The 
graph below shows an example of a dependency parse 
tree of a sentence after applying the MST Parser [9]. 

                                                           
1  http://alias-i.com/lingpipe/demos/models/pos-en-bio-genia.Hidden 
MarkovModel 

 
Figure 2. The dependency tree of Ex2. 

B. Information Extraction 
Useful information to be extracted can be roughly 

classified into two categories: object recognition (e.g. 
entities, measurements) and relation extraction. For the 
former case, according to the template introduced in 
Section 3, we need to extract proteins, mutation 
expressions, experimental conditions, and results; and 
for the latter case, relations between them should be 
identified. 

Object Recognition. As we mentioned before, NE 
types in the biological domains are mainly gene names, 
protein names, etc. In our work, we focus on mutation 
expressions, experimental conditions, and experimental 
results. 

For the mutation expression extraction, we use 
MutationFinder as the baseline system. After some 
error analysis of the preliminary results, we 1) further 
improved the regular expression used in 
MutationFinder and 2) incorporated linguistic 
information as well. In detail, the original 
MutationFinder searches for mutation expressions with 
all three fields, wild-type residue, mutation position, 
and mutated residue, while we additionally allowed 
some missing fields, like an isolated residue or a 
residue with a mutation position, to be extracted. The 
purpose is to use these residues as starting points 
together with the dependency parse tree to identify 
mutations expressed in the natural language sentences. 

Ex2 is a good example to show possible further 
improvements of MutationFinder. In fact, the pattern, 
WRESPPOS was mutated to MRES2, is included in the 
system, but the rigid surface string cannot capture 
various linguistic expressions with the same (or similar) 
meaning, like in Ex2. Therefore, we make use of the 
identified residues and mutation positions as entries to 
the dependency tree (as shown in Figure 2) and 
traverse up to discover the common ancestor node of 
the residue pair. This common ancestor node usually 
conveys the semantic relation between these two 
residues. In case of the verb be, we take the adjacent 

                                                           
2  WRESPPOS represents the wild-type residue with the mutation 
position; and MRES represents the mutated residue. 

CcP 

mutation protein 

E290K 

condition 

18mM ionic strength (a) Weaken 1:1 
complex 

(b) K1 decreases 
20-fold 

result 
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verb instead (i.e. mutated in Figure 2). The mutation 
position is either given with one of the residues (as in 
Figure 2) or as another descendant of the root node (e.g. 
mutated … at the position 137). 

Both experimental conditions and experimental 
results are conveyed via numbers from the NLP 
perspective. However, there are still some different 
focused measurements to discover. For the 
experimental conditions, the temperature and pH value 
are the most important and straightforward information 
to extract. For experimental results, DeltaG, 
DeltaDeltaG, K(cat), etc., are the most interesting 
results for researchers in the biological or biophysical  
area. 

Relation Extraction. Most of the previous work 
focused on identifying biological entities, while some 
also concentrated on extracting relations between 
entities, e.g. the task of extracting protein-protein 
interactions. 

Enlightened by the successful usage of dependency 
paths in many NLP tasks, e.g. relation extraction [10], 
question answering [11], recognizing textual 
entailment [12], we based our extraction approach on 
the dependency tree. In fact, the algorithm is quite 
similar to the one we used for improving the mutation 
extraction, but allows more flexibility. We constructed 
patterns using the following two basic functions 
manipulating the dependency tree, 

1. Find the dependency path between A and B; 
2. Find all the common ancestor verbs for A and B; 
where A and B are objects extracted before (see 

Section 4.2.1). 
Usually, the experimental conditions are expressed 

via numbers only, whereas the experimental results 
also contain qualitative expressions such as increase or 
decrease. Therefore, the mutation-condition relation 
extraction can be viewed as a binary classification of 
relations existing between the condition and the 
mutation; for the latter one, the mutation-result 
extraction also asks for the label of such relationships, 
that is, whether the mutation increases or decreases the 
measured value.  For example, 
Ex4: MBP-H213A and H216A TfdA have elevated 
K(m) values for 2,4-D, and the former showed a 
decreased k(cat), suggesting these residues 
may affect substrate binding or catalysis. 

H213A and H216A are mutations, and K(m) and 
k(cat) are experimental results. We assume that they 
are all correctly extracted. Based on these objects, the 
relations between the mutations and the results are 
expressed via the words in boldface. Roughly speaking, 
the relations can be classified into two categories, 
labeled relations (e.g. evaluated, decreased) and 
unlabeled relations (e.g. showed). In experiments, we 
evaluated for both cases (see Section 5.1). 

 
V. EXPERIMENTS 

In order to evaluate our approach, we setup two 
experiments for object recognition and relation 
extraction, respectively. For the mutation extraction, 
we used MutationFinder as our baseline system for 
comparison; and for other object extraction and 
relation extraction, two researchers from both biology 
and NLP areas manually checked the results. 

The data used in our experiments contained 922 
literature abstracts collected from the MedLine [13] 
bibliographical database which has been previously 
annotated in PMD with the keyword mutagenesis. 

A. Experimental Results 
We apply precision, relative recall3, and f-measure 

as our evaluation metrics for the first experiment, the 
mutation extraction. Most of the results are verified 
with the gold standard automatically extracted from the 
PMD database; and the remainder is evaluated 
manually. The following table shows the results (MF 
stands for MutationFinder; MF+ME is our system), 

TABLE 1. RESULTS OF MUTATION EXTRACTION 
 MF (Baseline) MF+ME 

Precision 94.3 89.4 
Relative Recall 88.3 100 

F-Score 91.2 94.4 
In total, we extracted 3,818 mutation instances, 

which outperformed the baseline system in terms of a 
large increase in recall and a drop in precision. We will 
present some examples in the next subsection, which 
also shows possible further improvements. 

For the second experiment, since we do not have 
comparable systems (to our best knowledge), we 
manually read about 15% of the data to estimate the 
precision. The detailed metrics are Unlabeled Precision 
(whether there exist a relationship), Labeled Precision 
(whether the relationship is correct), and Labeled 
Accuracy (on top of the extracted relations, the 
correctly labeled ones). The following table shows the 
results: 

TABLE 2. RESULTS OF RELATION EXTRACTION 
 Exp. Conditions Exp. Results 

Unlabeled Precision 69.6 88.5 
Labeled Precision / 84.6 
Labeled Accuracy / 92.3 

We notice that the performance of mutation-
condition extraction is much lower than the one of 
mutation-result extraction. However, due to the relative 
scarceness of mutation conditions 4  in abstracts, the 

                                                           
3 Since we did not manually read all the data, we assume the system 
that has the largest recall as 100 and other systems are relative values 
to it. 
4 The number of mutation-condition instances is only around 13.5% 
of the number of mutation-result instances. 
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performance is prone to errors and probably 
significantly underestimated. 

B. Discussion 
After taking a close look at both the gains and 

losses of our system, we have several interesting 
examples to show: 

In the mutation extraction part, provided with 
dependency parsing, our system can deal with non-
local dependency relations, e.g. in “We mutated 
Ala137 of T. brucei glycerol kinase into a 

serine”, the mutation Ala137Ser can be resolved in 
our system but cannot be easily captured by regular-
expression-based methods. However, when the entry 
(i.e. a residue or a residue with a mutation position) is 
mistakenly identified, the extracted mutation will be 
incorrect as well. In the example, “Mutants of 
tyrosine hydroxylase with alanine substituted 

for Phe300”, although tyrosine hydroxylase is a 
protein, tyrosine itself is a residue, thus Phe300Tyr was 
wrongly reported. 

Furthermore, coordination is a big source of errors. 
Both the parsing error of “Asn-185 of CitS was 
mutated to Val and Glu-194 was mutated to Gln” 
and lexical knowledge of respectively in “Glu112, 
Ser113 and Ser115 that … replaced by Pro, Gly 

and Glu, respectively” lead to errors. 
For the relation extraction part, more linguistic 

knowledge is needed. For instance, “MBP-H213A and 
H216A TfdA have elevated K(m) values for 2,4-D, 

and the former showed a decreased k(cat) ...”, 
the former needs to be resolved and linked to MBP-
H213A in order to capture its relation to the k(cat). The 
negations and exceptions expressed by the context are 
also of great importance. For example, “The C242S 
and C69A/C242S enzymes (but not the analogous 
C242A mutants nor the C69A or C69S mutants) 
exhibit approximately 10-fold increases in 

K(m)(HOB) and K(m)(AcAc) …”, not and nor negate 
the existence of some mutation-result relations. 

 
VI. CONCLUSION AND FUTURE WORK 

In this paper, we summarized our work on applying 
NLP techniques to analyze biological publications in 
order to help researchers in the area to quickly gather 
useful information. The task of ProtME is automatic 
extraction of information relevant to mutation 
experiments. In short, we 1) improved the mutation 
extraction through combining linguistic processing 
with a regular-expression-based system, and 2) 
explored the extraction of relations between the 
mutations and the experimental measurements. 

It is worthwhile to mention that in biological or 
biochemical literature, much of the relevant 
information is mentioned in neighboring sentences, 
and some of them are even spanned over paragraphs. 

This makes the task even more challenging for the 
current NLP techniques. We note that our method may 
as well be applied to other similar data set. Also, 
extension from abstracts to full manuscripts is 
straightforward. 
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